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Abstract. We consider the dilute Potts model on the Sierpinski carpet. The model has a 
phase transition at a finite temperature and both critical and tricritical behaviour are 
observed for q < qC (where q is the number of Potts states). We use Migdal-Kadanoff type 
recursion relations to obtain the value of qC and of critical and tricritical exponents and 
investigate their dependence on various geometrical characteristics of the fractal. 

1. Introduction 

In recent years there has been much interest in the properties of fractal objects 
(Mandelbrot 1982) which appear in various areas of physics like aggregation, percola- 
tion, turbulance and many more (Mandelbrot 1982). One direction of study has been 
to consider the critical properties of spin systems of fractal lattices (Gefen et a1 1983a, b, 
1984). It has been found that the Ising model on a fractal displays a phase transition 
of finite temperature only when the order of ramification (Mandelbrot 1982) of the 
fractal is infinite. Besides its fractal dimension, the fractal lattice is characterised by 
other geometrical properties like connectivity and lacunarity (Mandelbrot 1982) and 
the question is how these characteristics affect the critical behaviour of spin models 
on fractals (Gefen et a1 1983c, 1984). A complete answer to this question has not been 
given. 

In this paper we consider the Potts model on the Sierpinski carpet (Mandelbrot 
1982). On a hypercubic lattice the Potts model is characterised by a value qc,  where 
q is the number of Potts states, below which the transition is second order and above 
which it is first order. It is of interest to find out how qc,  and how critical exponents 
for q < qc,  depend on the properties of the fractal. The Potts model on the carpet has 
been considered in the past (Riera and Chaves 1986), but the authors used the 
Migdal-Kadanoff renormalisation group for the pure model, to be distinguished from 
the dilute Potts model. I t  is well known (Nienhius et a1 1979), the even on the 
hypercubic lattice one has to incorporate vacancies into the Potts model in any real 
space renormalisation group ( RG) treatment otherwise qc cannot be detected (the 
transition is always second order) because the symmetry between the coexisting phases 
is not respected by the RG transformation. Also the values of the exponents for q < qc 
but close to qc are not accurate without incorporating dilution. Thus in this paper we 
consider the dilute Potts model on the fractal lattice. This enables us also to obtain 
the exponents at the tricritical point which exists for the dilute model, including the 
king tricritical point which has not been investigated previously. We use the Migdal- 
Kadanoff (Migdal 1975, Kadanoff 1976) RG method to investigate the critical properties 
of the model, since an analytic method is not available at this point. The method has 
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the drawback that, because it is only approximate, it is not always clear which of the 
results originate from inaccuracies of the method and which are intrinsic to the model. 

2. Properties of Sierpinski carpets 

We summarise here briefly the properties of the fractal lattices which are being 
considered in this work, namely the Sierpinski carpets (Mandelbrot 1982, Gefen et a1 
1984) embedded in two Euclidean dimensions. They are constructed in the following 
way: we start with a square of unit area which we divide into b2 equal subsquares out 
of which I’ are eliminated, For given (b, I ) ,  there are many ways to eliminate the l 2  
squares. We consider the cases where 90” rotation symmetry is preserved. The construe- 
lion is repeated iteratively for each square in a self-similar way until one reaches the 
‘microscopic’ length scale. 

The fractal dimension of the carpet is given by 

D = In( b2 - I’)/ln b. (2.1) 

Hence 1 < D < 2. The topological dimension of the carpet (Mandelbrot 1982) is given 
by DT = Df+ 1, where Df is the topological dimension of the ‘cutset’. Since the carpet 
can be cut by a Cantor set, whose topological dimension is zero, it follows that the 
topological dimension of the carpet is 1, which is less than the fractal dimension 0, 
as is expected for a fractal. 

The order of ramification R of a fractal lattice at a point P is the supremum of 
the number of significant bonds which one must cut in order to isolate an  arbitrarily 
large bounded set of points connected to P (Mandelbrot 1982, Gefen et a1 1984). 
For the carpets which are considered here R = 03. When spin models which display 
a finite-temperature phase transition on a regular translationally invariant lattice 
are put on the fractal lattice with R = 00 they display a finite temperature transition 
as well (Gefen et a1 1984), as opposed to the same model on a fractal with finite 
order of ramification which displays a transition only at zero temperature (Gefen et a f  
1983a, b).  

The connectivity Q is defined as Q = min{D‘}, where D’ is the fractal dimension 
of the surfaces of isolated bounded sets (Gefen et a1 1983a, Mandelbrot 1982). For 
the carpet Q = ln(b - I)/ ln b, so it is uniquely defined in terms of b and 1. 

Lacunarity ( L )  indicates the degree of translational variance of the fractal set 
(Mandelbrot 1982). Two carpets with the same b and  I (i.e. the same D and Q )  can 
have different distributions of the eliminated squares which result in different degrees 
of non-translational invariance. Mandelbrot and  co-workers (Gefen et af 1984) gave 
an  approximate expression to evaluate L for the carpet. They consider all possible 
choices of an  I x I square on the b x b lattice. For a given choice i, we denote by n, 
the number of uneliminated 1 x 1 squares belonging to the 1x1  square. Then the 
lacunarity is defined by 

with N being the total number of choices of the I x I square out of b x b. The above 
formula is only approximate and it actually gives L = 0 for some carpets which are 
obviously not translationally invariant (see figure 1). The reason for the inaccuracy 
of the definition is that it uses only one stage in the construction of the carpet. A 
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Figure 1. Sierpinski carpet ( 5 , 2 )  with scattered cutout. n, = 3 for all I .  Thus L = 0 according 
to equations (2 .2)  and (2 .3) .  

better definition would take many stages into consideration. It was claimed (Gefen et 
a1 1983c) that on a Sierpinski carpet, critical properties approach that of the hypercubic 
lattice of the same dimension when L- ,  0. In that paper (Gefen et a1 1983c), lacunarity 
is defined as the mean square deviation divided by the square of the mean. One can 
define 

In the following we will refer to these two definitions of lacunarity. 
The second definition seems more appropriate for the following reason: if one 

considers Sierpinski carpets with scattered cutout (as depicted in figure 1) with b = 
21 + 1, one expects that, as b --* CO, the carpet looks more and more uniform and L- ,  0. 
But numerical results give L(’) - -*  CO whereas L(*)--* 0 as b becomes large which suggests 
that L‘” is not properly normalised. 

3. Potts lattice gas model 

We consider the Potts lattice gas ( PLG) Hamiltonian (Nienhuis et a1 1979) 

H 
--= J C tit,( S , ,  - 1) - 4F ( ti - t,)’ + G C t ,  

kT ( i j )  ( 0 )  I 

(3.1) 

where a, is the Potts spin variable which can take q values and t ,  is the lattice gas 
variable: t ,  = 1 when site i is occupied by a spin (a , )  and t ,  = 0 for a vacant site. J is 
the spin-spin coupling, F is the lattice gas coupling and G controls the concentration 
of vacancies. When G -, CO the model reduces to the undilute Potts model. 

As noted in the introduction, when using a real space renormalisation procedure 
it is imperative to use the dilute Potts model in order to detect a first-order transition, 
even on ordinary lattices (Nienhuis et a1 1979, Andelman and Berker 1981) since 
without dilution the renormalisation group does not respect the symmetry of the various 
degenerate ground states which coexist at the transition. 

The same phenomenon occurs for fractal lattices, hence the necessity to consider 
the Potts lattice gas instead of the pure Potts model in order to determine q,-the 
value of q below which the transition is second order and above which the transition 
is first order. Also in this case the exponents obtained for q z s  qc are more accurate 
than those obtained using the pure model. Another obvious advantage is, of course,, 
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the calculation for q zz qc of the tricritical exponents, since tricritical behaviour exists 
only for the dilute model. 

We studied the critical properties of the PLG on Sierpinski carpets using the 
Migdal-Kadanoff (Migdal 1975, Kadanoff 1976) bond-moving approximation which 
is essentially a one-dimensional decimation method. 

We first give here the formula for a one-dimensional decimation with a scale factor 
of N. Defining 

x e-J f =  e-F g = e-G (3.2) 

the renormalised couplings are given by (Berker er a1 1980) 

with 

xYA: xNA1 
R” =- +- 

q+A: q+A! 

A,= w*(q+w2)”* 

w =f”2[g”2 - g-”2( 1 - x + qx)]/2 

x * = ( g - f  g 7)/(1--x) .  1/2 1/2A 

(3.4) 

4. Renormalisation scheme 

We outline in this section the renormalisation group procedure for the Sierpinski carpet 
with a central cutout, using the bond moving technique. The procedure for other types 
of carpets is outlined in appendix 2. 

The bond moving scheme is similar to the one used in Gefen et a1 (1984), but here 
we have additional bond and on-site couplings. The on-site couplings are not moved. 
All the interior bonds within the 6 x 6 cells are moved to the edges in a symmetrical 
way (see figure 2 ) .  The renormalisation scheme compels us to introduce two types of 
bonds with couplings 

x = e-J f= e-F and x, = e-Jn f, = e-F-. (4.1) 

The latter couplings belong to bonds which are part of a wall, i.e. to an edge of a 
cutout. We will argue in the following that it is also necessary to introduce two kinds 
of on-site couplings g and g,. In figure 2 we show the two types of bonds: normal 
type and wall type after bond moving. In the first stage one decimates the ( b  - 1)/2 
bonds in the two exterior sections and the 1 bonds in the intermediate section. The 
three sections are then combined into a single renormalised bond with parameters x’, 
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- b;‘ bonds ( X ’ ~ - ” ’ ~ X , , I  - Bond mov ing  , bonds ( , ra - i -z~12~; ,  Renormalise 
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2 

a A A 

x: 

Figure 2. Bond moving renormalisation scheme for a Sierpinski carpet with central cutout. 
The direction of bond moving is always outwards and bonds are moved to overlap on 
bonds of the next stage. ( a )  Normal bond. ( b )  Wall bond. x = e-’, x, = e-’. and f = efF, 
f, = e-F* are treated in the same way, but g = e-G, g, = -G* are not moved. The strength 
of each bond is given in parentheses. 

f’, g or xL, f k ,  2, for normal type or wall type respectively. The formula for adding 
the three sections is given in appendix 1. The couplings g and gw are not yet the 
renormalised coupling constants g’ and gL. The renormalised couplings are given by 

g’=  s 2 / g  gL = gw(Elg)”2* (4.2) 

To derive (4.2) one realises, looking at the geometry of the carpet, that it is natural to 
define three types of on-site couplings which may be denoted by 0, A,  x (see figure 
3 ( a ) ) .  The site denoted by 0 is a site not attached to a wall, A denotes a site attached 
to a wall which is not at a comer of the wall and x denotes a site at a corner of the 
wall. In our renormalisation procedure bonds are moved but not sites. Hence, consider- 
ing two types of bonds after bond moving (figure 3(b)) with 0 type or A type on-site 
couplings respectively, they yield after decimation to bonds with end-site coupling of 
type 0 and A, respectively. Thus the renormalisation of the various couplings will be 

0 ’ = 2 0 - 0  

A ’ =  A + & + c  
x ’ = x + O - O + A - A  

(4.3) 

and the first two relations are independent of x .  Thus we consider only the couplings 
corresponding to O ( G )  or A(G,) and by using the definition g=exp(-G) ,  g,= 
exp(-G,) we arrive at (4.2). Note that at the fixed point g’=  g = g* one has also 
g = g* and similarly 2, = g$ Thus we could have used g and gw to locate the fixed 
points. The eigenvalues of the RG iterations about the fixed point depend though on 
the form of (4.2). 
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Figure 3. Renormalisation of the on-site coupling. For simplicity, the carpet (3 ,  1) is drawn 
as an illustration. ( a )  Labels for the three different types of sites; ( b )  the two types of 
bonds arising from bond moving. Full and broken lines denote normal wall bonds 
respectively; ( c )  situation after one complete renormalisation. The cutouts are not shaded 
for better visualisation of the bonds and sites. 

The renormalisation procedure is performed numerically on the computer by using 
the analytic formulae discussed above. One subroutine performs the decimation of 
bonds of equal strength to arrive at the three sectors depicted in figure 2. Another 
subroutine adds the three bonds of which the first and third have the same strength. 
And thus, with the use of (4.2) the renormalised couplings are being obtained after a 
single iteration of scale factor b. 

It is possible to improve sometimes the results of the Migdal-Kadanoff recursion 
relations (Andelman and Berker 1981) by shrinking the lattice after each iteration to 
keep the density of sites fixed. Since sites are not moved together with the bonds the 
number of sites decreases after each iteration. It is possible to compensate for this 
decrease in density by shrinking the size of the carpet appropriately. The shrinking 
factor z for the case of a central cutout is worked out in appendix 3 and is given by 

b+1-2  
z =  1- ( ( b  + 1)[1 +21/(b2- 1 2 -  b) - l / ( b 2 -  1 2 -  113 (4.4) 

To summarise, we obtained six recursion relations of the form 

x'=x'(x,xw,f,fw,g,gw) 

etc. It is possible to construct a map of the flow in the six-dimensional space, but this 
method is very awkward because of the high dimensionality and the fact that most 
fixed points have unstable directions. It is much better to use a Newton-Raphson type 
routine for finding zeros of a set of non-linear equations of the form 

x'--'(x, xw,f,fw, g, gw) = o  
etc, and then find the eigenvalues of the recursion relations about these fixed points. 
This is the procedure we followed. 
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5. Results 

As outlined in 0 4, the six non-linear equations are solved numerically, and the fixed 
points are found for a given carpet, for various values of q-the number of Potts states. 
In most of the following we discuss the case of the central cutout with b > 1 + 2, and 
the case of scattered cutout such that holes are separated by at least two non-eliminated 
squares. Other cases are discussed in appendix 4. A typical plot of the x* fixed point 
value against q is depicted in figure 4. For small values of q we find both a critical 
and a tricritical fixed point. They merge for some value of q denoted by qc.  For the 
critical fixed point g$ - 0 which means that there are no vacancies on the walls. We 
also show the undiluted fixed point g* = g$ = 0 which is obtained for the undiluted 
model. As discussed previously, in the undiluted case one cannot observe the first-order 
transition for any value of q, since the recursion relations do not preserve correctly 
the symmetry of the coexisting phases at the transition. Also shown in the figure is a 
broken curve which connects the point where the critical and tricritical points merge 
to the line of undiluted fixed points. This line is most probably spurious and is an 
artefact of the renormalisation procedure and does not represent any real physics. We 
do not consider it further in the following discussion. 

Figure 4. Typical fixed point locus of Sierpinski carpet considered in 8 5.  

We obtained the critical and tricritical fixed points for several values of (b ,  I )  and 
for different values of q as displayed in figure 5 .  We observed that g'>g' and 
g: > g; - 0, i.e. the tricritical point is characterised by a higher concentration of 
vacancies, as is also true for an ordinary cubic lattice. 

Table 1 shows the critical exponent as obtained from the undilute model using 
Migdal RG as opposed to the two leading critical exponents obtained from the Potts 
lattice gas for the cases q = 2 and q = 5. For q = 2 the results obtained from the two 
models agree closely, but for q = 5 which is closer to qc the deviations are larger. The 
undiluted case will continue to show a second-order transition even for q > qc. Notice 
that it is the second leading exponent for the PLG which corresponds to the thermal 
exponent since its eigenvector lies mostly in the x or x, direction, whereas the leading 
exponent corresponds to an eigenvector which points in another direction in parameter 
space. 

In figure 6 ,  qc is plotted against the fractal dimension D for various values of b 
and 1. We notice that, contrary to the hypercubic lattice, qc is not a monotonically 
decreasing function of D. One reason is due to the inaccuracies associated with the 
Migdal scheme. Returning to the hypercubic lattice we verified that qc is sensitve to 
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2 6 10 14 18 
4 

Figure 5. Value of the fixed point x *  plotted against q for various (b ,  I ) .  

Table 1. Comparison between the critical exponents of undilute ( U D L )  and PLG models. 
y,,, should be compared with the second leading y',,, since the leading one has an 
eigendirection which has vanishing x or x, components. 

q = 2  q = 5  

Y EPLG YC,,, 
(b ,  1 )  y,,, (first two leading) YGDL (first two leading) 

( 5 ,  1) 0.519 1.296 0.487 0.619 1.134 0.27 1 
(7, 3) 0.314 1.308 0.278 0.330 1.233 0.284 
(9,3) 0.432 1.253 0.419 0.504 1.171 0.347 
(11,5) 0.342 1.256 0.340 0.392 1.217 0.311 
(16,8) 0.341 1.228 0.321 0.400 1.203 0.309 
(15 ,  7) 0.357 1.228 0.342 0.419 1.198 0.325 

the scale factor b for a fixed dimension of the hypercubic lattice. In the case of the 
hypercubic lattice one can always choose a small value of the scale factor b > 1 in the 
Migdal scheme. But for the fractal lattice we must take the scale factor to be equal 
(at least) to the value of b which defines the carpet, otherwise self-similarity will be 
lost. One observes that qc for the carpet is larger than qc for the hypercubic lattice of 
the same dimension when one uses the same scale factor b. 

It was suggested by Gefen et a1 (1984) that lacunarity is an additional parameter 
which distinguishes fractal lattices with the same value of 0, and certain properties 
of spin models on fractals may depend on the lacunarity L even for the same value 
of D and Q (which are both uniquely determined by b and I ) .  Hence universality 
may be lost and critical properties of the fractal may coincide with the characteristics 
of a hypercubic lattice of the same dimension only in the limit of low lacunarity (Gefen 
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Figure 6. qc plotted against D for Sierpinski carpets and for the hypercube. 

et a1 1983~) .  In order to isolate the dependence of qc on L one has to fix b and 1 and 
look at carpets with a different distribution of cutouts. The four carpets (8 ,2)  shown 
in figure 7 have the same D and Q but different lacunarity. Figure 8 shows a plot of 
qc against L(') (using the definition (2.3) of lacunarity). qc increases only slightly with 
L and is almost constant. This suggests that qc is rather insensitve to lacunarity. 

To investigate the effect of lacunarity on the critical exponents of the carpet, we 
have chosen various values of b and 1 all corresponding to D -  1.9, and all having 
roughly the same value of Q. The results are given in table 2 with lacunarity calculated 
using the two definitions given in 0 2. According to definition ( l ) ,  these carpets have 
a wide range of lacunarity and the exponents stay almost constant over this range of 
three decades. However, if one looks at values of lacunarity using definition ( 2 ) ,  all 
these carpets have very close values of the lacunarity L"'-O.12. 

To isolate the effect of lacunarity, we again consider the carpets depicted in figure 
7. The corresponding exponents are calculated, and the results are tabulated in table 
3. A plot of the thermal exponent (which is the second leading exponent) against L'" 
is shown in figure 9. The critical exponents show a very slight rise as the lacunarity 
increases. It is not clear if this rise is intrinsically related to lacunarity or is associated 
with the approximations involved in the Migdal scheme. In any case lacunarity does 
not emerge as a strong factor in determining the critical properties. Similar conclusions 
will be reached in the next section where we carry out a more detailed investigation 
of the (undiluted) Ising model on a Sierpinski carpet. 

Figure 7. Sierpinski carpets ( 8 , 2 )  with different lacunarities. 
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Table 2. Data of PLG on Sierpinski carpets with central cutout. D - 1.9. c and t denote 
critical and tricritical points, respectively. y are calculated for q = 5, the first three leading 
y being given here. 

1.8928 

1.8957 

1.9035 

1.9093 

1.8962 

1.8910 

1.8947 

1.9021 

1.8949 

1.8958 

0.6309 

0.7124 

0.7472 

0.7679 

0.7500 

0.7686 

0.7563 

0.7720 

0.7627 

0.7685 

6.1 

12.5 

15.5 

17.4 

26.5 

27.0 

37.5 

38.5 

52.0 

64.0 

0.098 77 

3.942 4 

24.040 

81.896 

118.38 

217.58 

357.24 

692.61 

838.93 

1687.0 

0.1250 

0.1188 

0.1 192 

0.1 196 

0.1263 

0.1251 

0.1293 

0.1280 

0.1310 

0.1321 

c 1.195 
t 1.437 
c 1.233 
t 1.303 
c 1.217 
t 1.249 
c 1.198 
t 1.220 
c 1.203 
t 1.223 
c 1.188 
t 1.198 
c 1.190 
t 1.202 
c 1.177 
t 1.187 
c 1.178 
t 1.188 
c 1.169 
t 1.178 

0.308 -0.190 
0.616 0.148 
0.284 -0.099 
0.661 0.291 
0.311 -0.120 
0.649 0.317 
0.325 -0.145 
0.646 0.326 
0.309 -0.170 
0.707 0.320 
0.318 -0.168 
0.693 0.326 
0.310 -0.165 
0.729 0.321 
0.319 -0.189 
0.715 0.326 
0.314 -0.194 
0.735 0.322 
0.319 -0.178 
0.741 0.324 
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5.60 

5.20 

4, 4.00- 
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Table 3. Data of PLG on Sierpinski carpets in figure 7. 

Figure qc L'll L'2' 
y for q = 5 
(first three leading) 

( 0 )  6.0 0.6281 0.046 54 c 1.137 
t 1.173 

1.167 
( C )  5.9 0.2200 0.016 3 1.084 

1.141 
( d )  5.5 0.0747 0.004 87 1.071 

1.079 

( 6 )  5.9 0.2200 0.016 3 1.101 

0.330 -0.218 
0.403 0.191 
0.301 -0.267 
0.420 0.152 
0.293 -0.245 
0.419 0.146 
0.268 -0.197 
0.331 0.115 

1 
f 

A 

1 

3 20 
0 0 16 0 32 0 40 

L ?'(lo- ')  

Figure 9. Critical (0) and tricritical ( A )  exponents plotted against L'2' for Sierpinski carpet 
(8,2). For the critical exponents, the second leading ones are used. 

Figure 10 shows the critical and tricritical exponents plotted against D for the case 
of a central cutout. The hypercubic lattice data are also plotted on the same figure. 
One should bear in mind that, for the same fractal dimension D, the two lattices differ 
also in the value of the connectivity which is given by 

Q = D - l  hypercubic lattice 
Q = D - 1 -In( 1 + I /  b)/ln b Sierpinski carpet. 

6. The undiluted Ising model on a Sierpinski carpet 

This model has been considered in Gefen et af (1984), but we try to investigate in 
greater detail the effect of lacunarity on the critical behaviour and also compare with 
the results of the diluted model. 
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1'2' i x l o - ' )  

Figure 10. Critical (0) and tricritical (A) exponents for various Sierpinski carpets plotted 
against D. For the critical exponents, the second leading ones are used. The critical and 
tricritical exponents for the hypercube are also shown (x ) .  

In order to investigate the dependence of the critical behaviour on lacunarity, we 
have tried to keep the fractal dimension D as constant as possible, with D -  1.9 and 
AD/ D < 0.5%. The connectivity Q is quite constant with Q - 0.75. We have considered 
two types of carpets: the carpets with central cutout and those with the scattered cutout 
(with b = 21 + 1; 1 odd). Ising spins have been put on the lattice sites. Migdal's bond 
moving renormalisation scheme has been used along the lines described in Gefen et 
a1 (1984). Fixed points and thermal exponents are listed in table 4. Typical renormalisa- 
tion group flow diagrams are depicted in figure 11. There are always two non-trivial 
fixed points E and F. E = (x*, x$ = 0) is the same for both central and scattered cutout 
types with equal values of b and 1. E is unstable in both x and x, directions. For the 
central cutout type F =  (x*#O,  x $ #  O), and for the scattered cutout type F=  
(x* = 0, x$ # 0). The exponents at E are equal for both types of carpets with the same 
b and 1, but at F the exponent v is smaller for the central cutout type. For the types 
of carpets studied in Gefen et a1 (1984) our results agree with those reported there. 
In order to study the effects of lacunarity on critical exponents, we plot in figure 12 
the exponent vF against lacunarity, as calculated from the definitions (2.2) and (2.3). 
Figure 12(a) shows that v decreases with increasing L"' for low values of the lacunarity, 
but stays rather constant over four decades for larger values of L. Figure 12( b)  shows 
the exponent plotted against ~ 5 ' ~ )  as calculated from (2.3). Except for the point 
corresponding to the carpet characterised by (b, I)  = ( 3 , l )  (for which the connectivity 
Q is exceptionally low) v stays quite constant with a value U- 1.9. Both definitions 
suggest that v is rather insensitve to lacunarity. 

Also from table 4, one can see that, for data with almost identical D and L"), v 
decreases as Q increases. To summarise one can deduce the following variation of v 
from table 4 (in each case the other unmentioned quantities are held constant): 

(i) v increases with decreasing D, 



Potts model on a fractal lattice 2171 

Table 4. Undilute Ising model on Sierpinski carpets. Density of sites is not conserved. 
The thermal exponent Y is given by y ; ' .  

Central cutout 
1.893 

1.876 

1.904 

1.909 

1.896 

1.904 

1.895 

1.909 

1.902 

1.895 

1.908 

1.902 

1.876 

1.890 

Scattered cutout 
(7 ,3 )  1.876 

(11,5)  1.904 

0.631 

0.712 

0.747 

0.768 

0.750 

0.769 

0.756 

0.782 

0.772 

0.763 

0.784 

0.776 

0.769 

0.761 

0.7 12 

0.747 

0.768 

F 0.177 
E 0.786 

0.577 
0.841 
0.683 
0.871 
0.741 
0.891 
0.729 
0.899 
0.771 
0.910 
0.763 
0.915 
0.801 
0.919 
0.795 
0.922 
0.790 
0.926 
0.818 
0.929 
0.814 
0.93 1 
0.810 
0.934 
0.807 
0.936 

0 
0.841 
0 
0.871 
0 
0.891 

0.969 0.098 77 0.125 
0 
0.991 3.942 
0 
0.998 24.04 
0 
0.9993 81.90 
0 
0.9993 118.4 
0 
0.9998 277.6 
0 
0.9998 387.2 
0 
0.9999 560.8 
0 
0.9999 692.6 
0 
0.9999 838.9 
0 
0.999 97 1222.9 
0 
0.999 97 1445.5 
0 
0.999 97 1687.0 
0 
0.999 97 1947.4 
0 

0.747 0.9984 
0 
0.764 2.949 
0 
0.790 5.920 
0 

0.119 

0.119 

0.120 

0.126 

0.125 

0.129 

0.124 

0.128 

0.131 

0.127 

0.130 

0.132 

0.134 

0.020 15 

0.008 08 

4.46 
1.78 
1.91 
1.68 
1.82 
1.67 
1.79 
1.67 
1.84 
1.70 
1.82 
1.70 
1.85 
1.71 
1.81 
1.70 
1.83 
1.71 
1.85 
1.73 
1.83 
1.72 
1.84 
1.73 
1.85 
1.74 
1.86 
1.75 

2.17 
1.68 
1.97 
1.67 

0.00429 1.91 
1.67 

-7.30 
2.43 

-0.69 
2.25 

2.18 
-0.51 

2.13 

2.17 
-0.48 

2.13 

2.15 
-0.43 

2.10 
-0.46 

2.12 
-0.41 

2.14 
-0.42 

2.10 
-0.41 

2.11 
-0.44 

2.13 

2.14 

-0.57 

-0.53 

-0.49 

-0.42 

-2.99 
2.25 

-2.21 
2.18 

-2.00 
2.13 

Figure 11. Flow diagram of Sierpinski carpet (7 ,3 ) .  ( a )  Central cutout; ( b )  scattered cutout. 
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2 O( 
0 

1.00 A 10-2 1 ‘11’ lo2 lo4 

Figure 12. U plotted against lacunarity for q = 2 and D - 1.9. (a )  L‘” using equation (2.2); 
( b )  L‘” using equation (2.3). A, Central; 0, scattered. 

(ii) v increases with decreasing Q, 
(iii) v increases with decreasing L but is rather insensitive to L: 

Since the bond moving scheme has some intrinsic approximations it is hard to tell 
whether some of the qualitative results are not affected by them. For example we tried 
to see how these results will change by modifying the renormalisation group procedure 
such that the density of sites will be conserved. This is important when one considers 
the dilute model (Andelman and Berker 1981) and it gives a more accurate value of 
qc for the Potts model on the hypercubic lattice. It is thus of interest to see the effect 
of imposing such a condition in the undilute case. The results can also be more readily 
compared with those obtained for the diluted model with q = 2. 

The results for the Ising spin on the carpet with the density of sites conserved are 
listed in table 5 and flow diagrams are depicted in figure 13. The flow diagrams for 
the central cutout case are qualitatively the same as for the non-conserved case. For 
the carpet with scattered cutout though, the fixed point F is characterised by x * # O  
as opposed to the non-conserved case where it had x* = 0. 

Figure 14 shows a plot of vF against L‘” and one observes that vF is rather 
insensitive to lacunarity. For the same values of b and 1 (hence identical Q and D) 

Id v/dLI/ Idv/dDI << 1. 
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Figure 12. (continued) m E 

Figure 13. Flow diagram of Sierpinski carpet ( 7 , 3 )  with density of sites conserved. ( a )  
Central cutout; ( b )  scattered cutout. 

one finds vCentral> vscattered in contrast to the results obtained by not conserving the 
density of sites. 

To summarise, both tables 4 and 5 suggest that lacunarity has little effect on the 
exponents, and it is not clear if the dependence is intrinsic or results from approxima- 
tions inherent in the Migdal scheme. 
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Figure 14. v plotted against L'2' for q = 2 and D -  1.9, with density of sites conserved. 

7. Conclusions 

In this paper we have investigated the properties of the Potts model on a fractal lattice 
with an infinite order of ramification, namely the Sierpinski carpet. The value of q c ,  
critical and tricritical exponents were obtained for different values of b and 1 characteris- 
ing the carpet, and for different distributions of cutouts. The results certainly depend 
on the fractal dimension D of the fractal. qc tends to increase very slightly and the 
exponent v tends to decrease slightly with increasing lacunarity. But since the Migdal 
scheme is approximate it would be important to verify these results using a different 
RG scheme in order to ensure that these small effects are not related to inaccuracies 
of the RG method. The connectivity is another property which may affect critical 
behaviour, but a detailed study of its influence is difficult since it is hard to change 
the connectivity keeping the fractal dimension and lacunarity fixed. 
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Appendix 1 

After bond moving, one obtains the situation represented diagrammatically as in figure 
2. Summing up the bonds to get the renormalised couplings is equivalent to multiplying 
all the transfer matrices (a  total of b matrices). Due to the non-commutativity of these 
transfer matrices of the PLG Hamiltonian, the order of summing the bonds of different 
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Table 5. Undilute lsing model on Sierpinski carpets. Density of sites is conserved. The 
thermal exponent U is given by y l ’ .  

( b ,  11 D 

Central cutout 
1.893 

1.896 

1.904 

1.909 

1.896 

1.904 

1.895 

1.909 

1.902 

1.895 

1.908 

1.902 

1.896 

1.890 

Scattered cutout 
(7,3) 1.896 

(11,5) 1.904 

(15,7) 1.909 

0.63 1 

0.712 

0.747 

0.768 

0.750 

0.769 

0.756 

0.792 

0.772 

0.763 

0.784 

0.776 

0.769 

0.761 

0.7 12 

0.747 

0.768 

0.0774 
0.695 
0.194 
0.641 
0.268 
0.656 
0.316 
0.670 
0.284 
0.687 
0.327 
0.694 
0.305 
0.706 
0.360 
0.702 
0.342 
0.71 1 
0.326 
0.719 
0.371 
0.716 
0.357 
0.723 
0.344 
0.730 
0.332 
0.737 

0.018 
0.647 
0.0103 
0.661 
0.008 29 
0.673 

0.643 
0 
0.888 
0 
0.954 
0 
0.978 
0 
0.974 
0 
0.987 
0 
0.986 
0 
0.993 
0 
0.992 
0 
0.972 
0 
0.996 
0 
0.996 
0 
0.996 
0 
0.996 
0 

0.408 
0 
0.393 
0 
0.403 
0 

0.098 77 0.125 

3.942 

24.04 

8 1.90 

118.4 

277.6 

357.2 

560.5 

692.6 

838.9 

1222.9 

1445.5 

1687.0 

1947.4 

0.9984 

2.949 

5.920 

0.119 

0.119 

0.120 

0.126 

0.125 

0.129 

0.124 

0.128 

0.131 

0.127 

0.130 

0.132 

0.134 

0.020 15 

0.008 08 

0.004 29 

2.95 
0.44 
3.18 
0.39 
2.93 
0.40 
2.80 
0.40 
2.93 
0.41 
2.82 
0.41 
2.90 
0.41 
2.75 
0.41 
2.81 
0.42 
2.86 
0.42 
2.76 
0.42 
2.79 
0.42 
2.84 
0.42 
2.87 
0.42 

2.87 
0.40 
2.74 
0.40 
2.68 
0.41 

-1.70 
1.96 

-1.13 
1.97 

-0.91 
1.99 

-0.80 
2.01 

-0.87 
2.03 

-0.77 
2.04 

-0.80 
2.06 

-0.71 
2.06 

2.07 
-0.75 

2.08 
-0.69 

2.08 
-0.68 

2.09 
-0.69 

2.10 
-0.71 

2.11 

-0.73 

-2.94 
1.96 

-2.94 
1.98 

-2.83 
2.00 

strengths cannot be altered. To sum the bonds, the first and last $( b - I )  bonds are 
summed by one-dimensional decimation to give a bond of strength x1 ; the middle 1 
bonds are similarly decimated to give x2. We then have the situation of three bonds 
xI , x2, x, in series where x1 f x2 in general. The final renormalised coupling x’ is 
obtained by multiplying three transfer matrices of which the middle matrix has different 
couplings. 

The formulae for renormalised couplings x’, f’, g‘  (x = eCJ, f = eCF, g = eCG) are as 
follows: 

x‘=  {2x1 +x,+ ( q  -2)x: 
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Figure A l .  ( a )  Situation after bond moving for the carpet in figure 1. ( b )  Renormalisation 
procedure for figure 1. ( c )  Renormalisation procedure for figure 7 ( b ) .  

where we defined 

(Al.2) 

Appendix 2 

Here we consider Sierpinski carpets such that no two (or more) eliminated units (1 x 1 
squares) are connected with each other and the carpet also respects 90" rotational 
symmetry. The carpet shown in figure 1 is one example and will be used here as an 
illustration. After bond moving, one has the situation as in figure A l ( a ) .  We recall 
in appendix 1 that one knows how to decimate an arbitrary number of bonds of same 
strength and one also knows how to add up three bonds such that the first and third 
bonds have the same strength. We denote the above two tools, respectively, by Deci 
and Add. The renormalisation procedure is shown diagrammatically in figure A l (  b ) .  
In fact Deci and Add can be used to renormalise any Sierpinski carpet; an example 
is shown in figure Al(c) .  

Appendix 3 

Consider an N-stage Sierpinski carpet with central cutout characterised by b and 1. 
Before bond moving, the total number of sites is 

( b N  + 1)'- (IbN-' - 1)2- ( b 2 -  l2)(lbN-' - l ) 2 - .  . . - ( b 2 -  f 2 ) N - ' ( l  - 1) 

(A3.1) 

The number of sites decoupled from the lattice upon bond moving is 

( b 2 -  1 2 ) N - ' [ ( b  - 1)2-(1- l)']. (A3.2) 
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Hence 

number of sites after bond moving 
number of sites before bond moving 

( b  + 1 - 2 )  
( b  + I ) [  1 + 21/(b2 - 1’- b )  - 1 / (  b2 - 1’- I)]’  

= I -  (A3.3)  

If one demands the densiiy of sites to be invariant under bond moving, then one 
has to shrink the length b +  b such that 

(A3.4) 
b + l - 2  

( b  + I)[1 +21 / (b2  - 1’-  b) - l/(b’- 1’- l ) ]  b 

i.e. all lengths should be shrunk by a factor of z. 

Appendix 4 

The type of carpets like the central cutout types with b = I + 2  (except b = 3 )  and 
scattered cutout types of the sort in figure 1 are special in terms of the bond moving 
scheme we used. Consider the situation in figure A2. The middle portion is independent 
of x, so AB cannot connect even though the normal bond has an infinite strength 
( J  = 03; x = 0) and, in this case, critical behaviour is governed by x, and g, and there 
exists fixed values g: other than 0 or 1. Hence, even though q is very large and so 
one needs a very strong bond for cooperative effect (x*-0) ,  one can still have more 
than one x:. So the critical and tricritical fixed points do not seem to merge together 
even for very large q. We believe this is an artefact of the bond moving because actually 
AB can be connected by normal bonds via paths in higher stages of the carpet. 

Em B 

101 15’ 

Figure A2. ( a )  Sierpinski carpet (5 ,3)  with central cutout. ( b )  Situation after bond moving. 
The strengths of the bonds are shown, the middle portion has been decimated by a scale 
factor of 3. 
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